Here’s a little question to see if you remember the different causes of conjugated and unconjugated bilirubinemia
While examining the gums of a 25 year old patient, a yellowish discoloration of the oral mucosa and sclera is noted. Laboratory tests show a significant increase in unconjugated bilirubin. Which of the following disorders is most likely the cause of this patient’s abnormalities?
A. A stone in the bile duct
B. Carcinoma of the head of the pancreas
C. Pancreatic pseudocyst
D. Sickle cell disease
E. Hepatocellular carcinoma
Let’s review a little before we get to the question.
Bilirubin is a breakdown product of heme (which, in turn is part of the hemoglobin molecule that is in red blood cells). It is a yellow pigment that is responsible for the yellow color of bruises, and the yellowish discoloration of jaundice.
When old red cells pass through the spleen, macrophages eat them up and break down the heme into unconjugated bilirubin (which is not water soluble). The unconjugated bilirubin is then sent to the liver, which conjugates the bilirubin with glucuronic acid, making it soluble in water. Most of this conjugated bilirubin goes into the bile and out into the small intestine. (An interesting aside: some of the conjugated bilirubin remains in the large intestine and is metabolized into urobilinogen, then sterobilinogen, which gives the feces its brown color! Now you know.)
So: if you have an increase in serum bilirubin, it could be either because you’re making too much bilirubin (usually due to an increase in red cell breakdown) or because you are having a hard time properly removing bilirubin from the system (either your bile ducts are blocked, or there is a liver problem, like cirrhosis, hepatitis, or an inherited problem with bilirubin processing).
The lab reports the total bilirubin, and also the percent that is conjugated vs. unconjugated. If you have a lot of bilirubin around and it is mostly unconjugated, that means that it hasn’t been through the liver yet – so either you’ve got a situation where you’e got a ton of heme being broken down (and it’s exceeding the pace of liver conjugation), or there’s something wrong with the conjugating capacity of the liver (like a congenital disorder where you’re missing an enzyme necessary for conjugation – for example, Gilbert syndrome).
If you’ve got a lot of bilirubin around and it’s mostly conjugated, that means it’s been through the conjugation process in the liver – so there’s something preventing the secretion of bilirubin into the bile (like hepatitis, or biliary obstruction), and the bilirubin is backing up into the blood.
Back to our question. Let’s go through each answer and see what kind of hyperbilirubinemia these disorders would cause.
A. A stone in the bile duct. If big enough, a stone here could block the excretion of bilirubin into the bile. The bilirubin would already be conjugated, so this would be a conjugated bilirubinemia.
B. Carcinoma of the head of pancreas. This could also cause biliary obstruction, similar to A. (An important aside: it’s nice when pancreatic carcinomas announce themselves this way, because it may allow for earlier detection of the tumor. Unfortunately, this is uncommon. Pancreatic adenocarcinoma is usually silent until the tumor is very large and possibly metastatic.)
C. Pancreatic pseudocyst. Same idea as A and B.
D. Sickle cell disease. Sickle cell anemia is a type of hemolytic anemia. It could be a cause of unconjugated bilirubinemia, if the hemolysis is massive enough. If it’s just a low level of hemolysis, the liver could probably keep up, and you’d get a conjugated hyperbilirubinemia.
E. Hepatocellular carcinoma. This would fall into the category of blocking excretion of bilirubin. The bilirubin would already be conjugated – so this would be a conjugated hyperbilirubinemia.
So: since A, B, C and E produce only conjugated hyperbilirubinemia, the answer is D, sickle cell disease.
This is awesome.
you always explain in the most simple way (but still rather thoroughly). thank you so much. 🙂
In sickle cell disease, when the liver can keep up with low levels of hemolysis why will there be be conjugated hyperbilirubinemia (the path for excretion of conjugated bilirubin is not blocked)?
Hi Shivani. There will still be hyperbilirubinemia even if the liver can keep up with the conjugation process, because there is excessive destruction of red cells. So if the liver is keeping up with the process, it will be a conjugated hyperbilirubinemia. If the liver falls behind, it will be an unconjugated hyperbilirubinemia.
thanx sir,i was tense,made me simple,i m grateful to u,nd proud of u,regard
Thank you amazing
genius
Thanks a lot. Really made it easier to understand.
Thank you… i hope you’ll keep on sending me things like this
Thanks ….. You are genius
thank you for simplifying it
thank for breaking it down
Finally after 4 years of Nursing school I understand bilirubinemia. Thanks so much.
You break it down like an hemolytic agent.Nicely done
You are thorough and amazing. Thanks
Thank you so much. The explanation was simple and just what I needed.
Thanks for your explanation. God bless you
Thank you so much for simplified explanation.
The posts are explanatory and elaborative, yet very easy to catch up
I’m a NP and I love this stuff!!
simply excellent
Thank you so much, you’ve made it simple to understand
Wow. I am a veterinary pathologist, I gain immensely from your posts. How I wish our teachers would have simplified things and made them interesting the way you do. Thank you, thank you, thank you. You are awesome
Thanks, Lakshmi! I’m so glad you’re finding some useful information here. I’ve learned a bit about veterinary pathology here and there, and it’s interesting how much overlap there is with human pathology!
Hey it’s really nice ….. And easy to understand thanks
Thank you so much for that explanation…. very very helpful!!
This was so great. Thanks for helping me to understand it better.
Thank you so much. Very elaborate and concise.
It is great to read 9 years later that your to the point explanation still helps others–I liked it, very succinct. thanks
Very nice, Very beautiful, Keep going
Great explanation